Пояснительная записка

Программа разработана в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования, утверждённого приказом Минобрнауки России от 17.12.2010 № 1897; (с изменениями, внесенными приказами Минобрнауки России от 29 декабря 2014 года № 1644, от 31 декабря 2015 года № 1577),

на основе примерной программы «Астрономия», входящей в состав Примерной основной образовательной программы основного общего образования (одобрена Федеральным учебно-методическим объединением по общему образованию, протокол заседания от 8 апреля 2015 г. №1/15), в соответствии с

Федеральный закон «Об образовании в Российской Федерации» от 29.12. 2012, № 273 – ФЗ.

Федеральный государственный образовательный стандарт среднего общего образования (Приказ Министерства образования и науки РФ от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» (с изменениями и дополнениями от 29 декабря 2014 г., 31 декабря 2015 г., 29 июня 2017 г.)).

Примерная основная образовательная программа среднего общего образования, одобренная решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з).

Приказ Министерства просвещения Российской Федерации от 28 декабря 2018 г. № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»

Приказ Министерства образования и науки Российской Федерации

от 4 октября 2010 г. № 986 «Об утверждении федеральных требований к образовательным учреждениям в части минимальной оснащенности учебного процесса и оборудования учебных помещений»; Приказ Министерства образования и науки Российской Федерации от 28.12.2010 № 2106 «Об утверждении федеральных требований к образовательным учреждениям в части охраны здоровья обучающихся, воспитанников»;

Постановление главного государственного санитарного врача РФ от 29 декабря 2010 г. № 189 «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях».

Письмо Министерства образования и науки РФ от 28 октября 2015 года № 08-1786 «О рабочих программах учебных предметов»

Методическое письмо о преподавании учебного предмета «Астрономия» в образовательных организациях Ярославской области.

Учебный план МОУ Ермаковской СОШ среднего общего образования

Рабочая программа как часть образовательной программы основного общего образования МОУ Ермаковской СОШ составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования, утверждённого приказом Минобрнауки России от 17.12.2010 № 1897;(с изменениями, внесенными приказами Минобрнауки России от 29 декабря 2014 года № 1644, от 31 декабря 2015 года № 1577), на основе примерной программы «Физика», входящей в состав Примерной основной образовательной программы основного общего образования (одобрена Федеральным учебно-методическим объединением по общему образованию, протокол заседания от 8 апреля 2015 г. №1/15). Программа ориентирована на использование учебного методического комплекса для 11 класса: Астрономия. Базовый уровень. 11 класс авторов Б. А. Воронцова-Вельяминова, Е. К.Страута Дрофа,2018г.

Реализация рабочей программы направлена на достижение обучающимися личностных, предметных и метапредметных результатов освоения учебного предмета «Астрономия».

Планируемые результаты освоения учебного предмета

Астрономия в школе - это курс, который, завершая физико-математическое образование выпускни-ков средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей плане-

ты, всех космических тел и их систем, а также самой Вселенной. Астрономия реализуется за счет школьного компонента. Изучение курса рассчитано на 34 часа. При планировании 1 час в неделю курс будет пройден в течение 11 класса. Изучение астрономии в 11 классе даёт возможность обучающимся достичь следующих результатов.

Личностные результаты:

сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;

убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к предмету как элементу общечеловеческой культуры;

самостоятельность в приобретении новых знаний и практических умений;

готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями; мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

умение самостоятельно определять цели и составлять планы, осознавая приоритетные и второстепенные задачи;

умение продуктивно общаться и взаимодействовать с коллегами по совместной деятельности, учитывать позиции другого, эффективно разрешать конфликты;

владение навыками познавательной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания для изучения различных сторон окружающей действительности;

готовность и способность к самостоятельной и ответственной информационной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учётом гражданских и нравственных ценностей;

владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме, включая составление текста и презентации материалов с использованием информационных и коммуникационных технологий, участвовать в дискуссии;

владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные результаты:

«Практические основы астрономии» позволяют:

- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- объяснять необходимость введения високосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять звездную карту для поиска на небе определенных созвездий и звезд. Предметные результаты изучения темы «Строение Солнечной системы» позволяют:
- воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по

- орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

«Природа тел Солнечной системы» позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеоры, болиды, метеориты);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.

«*Солние и звезды*» позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- объяснять механизм возникновения на Солнце грануляции и пятен;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять причины изменения светимости переменных звезд;
- описывать механизм вспышек новых и сверхновых;
- оценивать время существования звезд в зависимости от их массы;
- описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

«Строение и эволюция Вселенной» позволяют:

- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период — светимость»;
- распознавать типы галактик (спиральные, эллиптические, неправильные);
- сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;

- формулировать закон Хаббла;
- определять расстояние до галактик на основе закона Хаббла; по светимости сверхновых;
- оценивать возраст Вселенной на основе постоянной Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва.

«Жизнь и разум во Вселенной» позволяют:

• систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной. Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности

Выпускник научится

- смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;
- смысл физических величин:парсек, световой год, астрономическая единица, звездная величина:
- смысл физического закона Хаббла;
- основные этапы освоения космического пространства;
- гипотезы происхождения Солнечной системы;
- основные характеристики и строение Солнца, солнечной атмосферы;
- размеры Галактики, положение и период обращения Солнца относительно центра Галактики;
- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

- приводить примеры:роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;
- описывать и объяснять:различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы «цвет -светимость», физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;
- характеризоватьособенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;
- находить на небеосновные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;
- использоватькомпьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;
- использоватьприобретенные знания и умения в практической деятельности и повседневной
- жизни для понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии; отделения ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
- различать гипотезы о происхождении Солнечной системы.

Содержание учебного предмета Основное содержание учебного предмета (34 ч)

Предмет астрономии (2 ч)

Астрономия, ее связь с другими науками. Роль астрономии в развитии цивилизации. Структура и масштабы Вселенной. Особенности астрономических методов исследования. Наземные и космические

телескопы, принцип их работы. Всеволновая астрономия: электромагнитное излучение как источник информации о небесных телах. Практическое применение астрономических исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю. А. Гагарина. Достижения современной космонавтики.

Практические основы астрономии (5 ч)

Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Видимое движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

Строение Солнечной системы (2 ч)

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет

и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет.

Законы движения небесных тел (5 ч)

Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы (8 ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна -двойная планета. Космические лучи. Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды.

Метеоры, болиды и метеориты. Астероидная опасность.

Солнце и звезды (6 ч)

Излучение и температура Солнца. Состав и строение Солнца. Методы астрономических исследований; спектральный анализ. Физические методы теоретического исследования. Закон Стефана - Больцмана. Источник энергии Солнца. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Роль магнитных полей на Солнце. Солнечно-земные связи. Звезды: основные физико-химические характеристики и их взаимосвязь. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Эффект Доплера. Диаграмма «спектр светимость» («цвет - светимость»). Массы и размеры звезд. Двойные и кратные звезды. Гравитационные волны. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы. Закон смещения Вина.

Строение и эволюция Вселенной (2 ч)

Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Эволюция Вселенной. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Жизнь и разум во Вселенной (2 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Тематическое планирование 34 ч в год, 1 ч в неделю

Астрономия, ее связь с другими нау- ками. Роль астрономии в развитии ци- вилизации. Структура различных диапа: и масштабы Вселенной. Особенности астрономических методов исследова-	еры:роли астрономии в гации, использования ваний в астрономии, гаонов электромагнит-гля получения информа-Вселенной, получения информации с помо-гх аппаратов и спек-
1. Предмет астрономии 2 ч Приводить приме развитии цивилиз методов исследов исследов исследов исследов исследов и масштабы Вселенной. Особенности астрономических методов исследова-	зации, использования ваний в астрономии, зонов электромагнит- для получения информа- Вселенной, получения информации с помо-
Астрономия, ее связь с другими нау- ками. Роль астрономии в развитии ци- вилизации. Структура и масштабы Вселенной. Особенности астрономических методов исследова-	зации, использования ваний в астрономии, зонов электромагнит- для получения информа- Вселенной, получения информации с помо-
телескопы, принцип их работы. Всеволновая астрономия: электромагнитное излучение как источник информации о небесных телах. Прак-	ва, влияния солнечной емлю;
исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю. А. Гагарина. Достижения современной космонавтики. дарей, условия на и лунных затмени ные движения свети новения приливом действия оптичествия оптичествия оптичествия оптичествия оптичествия оптичествия оптичестванием.	яснять:различия каленаступления солнечных ий, фазы Луны, суточветил, причины возников и отливов; принципского телескопа, взаихимических характери-
Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Видимое движение и фазы Луны. Затме-	ользованием диаграммы гь», физические причи- ие равновесие звезд, и звезд и происхожде- элементов, красное ощью эффекта Доплера; особенности методов омии, основные эле- а планет Солнечной и определения расстоя- размеров небесных тел, эволюции звезд раз-
Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелио- центрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Синодичета, Луны и звезд ца, Луны и звезд ца, Луны и звезд	пьютерные приложе- ения положения Солн- на любую дату и время
	о населенного пункта;

5	Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе. Природа тел Солнечной системы Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна -двойная планета. Космические лучи. Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планетыкарлики, кометы, метеороиды. Метеоры, болиды и метеориты. Астероидная опасность.	8 ч	объяснять смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра; описывать основные характеристики и строение Солнца, солнечной атмосферы; размеры Галактики, положение и период обращения Солнца относительно центра Галактики; определять физических величин:парсек, световой год, астрономическая единица, звездная величина;
6	Солнце и звезды Излучение и температура Солнца. Состав и строение Солнца. Методы астрономических исследований; спектральный анализ. Физические методы теоретического исследования. Закон Стефана - Больцмана. Источник энергии Солнца. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Роль магнитных полей на Солнце. Солнечно-земные связи. Звезды: основные физико-химические характеристики и их взаимосвязь. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Эффект Доплера. Диаграмма «спектрсветимость» Массы и размеры звезд. Двойные и кратные звезды. Гравитационные волны. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы. Закон смещения Вина.	6 ч	объяснять смысл физического закона Хаббла; описывать основные этапы освоения космического пространства; использоватьприобретенные знания и умения в практической деятельности и повседневной жизни для понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии; отделения ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научнопопулярных статьях.
7	Строение и эволюция Вселенной Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла.	2 ч	

	Эволюция Вселенной. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.	
8	Жизнь и разум во Вселенной Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.	2 ч
9	Повторение	1ч
10	Итоговая контрольная работа	1ч
	ИТОГО	34